Unityで機械学習を行うためのライブラリが公開されているので試してみました。
サンプルのプロジェクトも収録されているので、
今回はサンプルを実行するところまで紹介します。
実行環境は以下のバージョンで試してみました。
Unity 2018.2.9f1
ML-Agents v0.5.0
Python3.6のインストール
Pythonの環境がインストールされている必要があります。
Python3とpip3がインストールされている必要があるので、
最低限の環境構築の方法を書いておきます。
公式サイト
Downloads → Mac OSX → Python3.6.7をダウンロードします。
ダウンロードしたファイルを開くとインストールが始まります。
手順に沿って進めるとインストールが完了します。
インストールした状態だとターミナルからpython3と入力すると実行できます。
$ python3 --version Python 3.6.7
pip3のインストール
pipというのはpythonライブラリをインストール・管理する仕組みです。
今回はTenserFlowなどをインストールするのに必要となります。
公式サイトでPython3をインストールするとpip3もインストールされる様です。
以下のコマンドでpip3がインストールされているか確認してみましょう。
$ pip3 --version
$ pip3 --version pip 10.0.1 from /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pip (python 3.6)
ML-Agentsのダウンロード
GitHubのML-AgentsのページにアクセスしてリポジトリからCloneもしくはzipをダウンロードします。
GitHub - Unity-Technologies/ml-agents: Unity Machine Learning Agents Toolkit
今回はzipファイルをダウンロードします。
解凍したフォルダを任意の場所に移動します。
必要なライブラリのインストール
ml-agents-master/ml-agents/以下に移動して、以下のコマンドを実行します。
$ cd Documents/product/unity/ml-agents-master/ml-agents/
$ pip3 install .
必要なライブラリのインストールが行われます。
$ pip3 install . Processing /Users/takezoh/Documents/product/unity/ml-agents-master/ml-agents Collecting tensorflow<1.8,>=1.7 (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/d3/90/f73789d9f6ecbd629ef646e234af9d15a6fadf81a928f9ae4332ba85fd76/tensorflow-1.7.1-cp36-cp36m-macosx_10_11_x86_64.whl (45.5MB) 100% |████████████████████████████████| 45.5MB 1.1MB/s Collecting Pillow>=4.2.1 (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/d1/21/bef2816809fac16754e07ed935469fc65f42ced1a94766de7c804179311d/Pillow-5.3.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6MB) 100% |████████████████████████████████| 3.6MB 5.2MB/s Collecting matplotlib (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/28/6c/addb3560777f454b1d56f0020f89e901eaf68a62593d4795e38ddf24bbd6/matplotlib-3.0.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.1MB) 100% |████████████████████████████████| 14.1MB 306kB/s Collecting numpy<=1.14.5,>=1.13.3 (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/f6/cd/b2c50b5190b66c711c23ef23c41d450297eb5a54d2033f8dcb3b8b13ac85/numpy-1.14.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7MB) 100% |████████████████████████████████| 4.7MB 6.4MB/s Collecting jupyter (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/83/df/0f5dd132200728a86190397e1ea87cd76244e42d39ec5e88efd25b2abd7e/jupyter-1.0.0-py2.py3-none-any.whl Collecting pytest>=3.2.2 (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/bb/d5/7601c468ded9a59478dcb39d21e24d58bb375681c64a06fbb629d2bc2ac3/pytest-4.0.0-py2.py3-none-any.whl (217kB) 100% |████████████████████████████████| 225kB 6.3MB/s Collecting docopt (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/a2/55/8f8cab2afd404cf578136ef2cc5dfb50baa1761b68c9da1fb1e4eed343c9/docopt-0.6.2.tar.gz Collecting pyyaml (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/9e/a3/1d13970c3f36777c583f136c136f804d70f500168edc1edea6daa7200769/PyYAML-3.13.tar.gz (270kB) 100% |████████████████████████████████| 276kB 6.0MB/s Collecting protobuf<3.7,>=3.6 (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/c7/27/133f225035b9539f2dcfebcdf9a69ff0152f56e0120160ec5c972ea7deb9/protobuf-3.6.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.2MB) 100% |████████████████████████████████| 1.2MB 10.1MB/s Collecting grpcio<1.12.0,>=1.11.0 (from mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/2a/4c/a2995d9350a80de94bf10f84353aee68849c0fe4cfe4979733494ef9693f/grpcio-1.11.1-cp36-cp36m-macosx_10_7_intel.whl (1.8MB) 100% |████████████████████████████████| 1.8MB 12.1MB/s Collecting tensorboard<1.8.0,>=1.7.0 (from tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/0b/ec/65d4e8410038ca2a78c09034094403d231228d0ddcae7d470b223456e55d/tensorboard-1.7.0-py3-none-any.whl (3.1MB) 100% |████████████████████████████████| 3.1MB 3.6MB/s Collecting wheel>=0.26 (from tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/ff/47/1dfa4795e24fd6f93d5d58602dd716c3f101cfd5a77cd9acbe519b44a0a9/wheel-0.32.3-py2.py3-none-any.whl Collecting astor>=0.6.0 (from tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/35/6b/11530768cac581a12952a2aad00e1526b89d242d0b9f59534ef6e6a1752f/astor-0.7.1-py2.py3-none-any.whl Collecting absl-py>=0.1.6 (from tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/0c/63/f505d2d4c21db849cf80bad517f0065a30be6b006b0a5637f1b95584a305/absl-py-0.6.1.tar.gz (94kB) 100% |████████████████████████████████| 102kB 5.6MB/s Collecting gast>=0.2.0 (from tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/5c/78/ff794fcae2ce8aa6323e789d1f8b3b7765f601e7702726f430e814822b96/gast-0.2.0.tar.gz Collecting termcolor>=1.1.0 (from tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz Collecting six>=1.10.0 (from tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/67/4b/141a581104b1f6397bfa78ac9d43d8ad29a7ca43ea90a2d863fe3056e86a/six-1.11.0-py2.py3-none-any.whl Collecting kiwisolver>=1.0.1 (from matplotlib->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/fb/96/619db9bf08f652790fa9f3c3884a67dc43da4bdaa185a5aa2117eb4651e1/kiwisolver-1.0.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (108kB) 100% |████████████████████████████████| 112kB 3.1MB/s Collecting cycler>=0.10 (from matplotlib->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/f7/d2/e07d3ebb2bd7af696440ce7e754c59dd546ffe1bbe732c8ab68b9c834e61/cycler-0.10.0-py2.py3-none-any.whl Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/71/e8/6777f6624681c8b9701a8a0a5654f3eb56919a01a78e12bf3c73f5a3c714/pyparsing-2.3.0-py2.py3-none-any.whl (59kB) 100% |████████████████████████████████| 61kB 15.7MB/s Collecting python-dateutil>=2.1 (from matplotlib->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/74/68/d87d9b36af36f44254a8d512cbfc48369103a3b9e474be9bdfe536abfc45/python_dateutil-2.7.5-py2.py3-none-any.whl (225kB) 100% |████████████████████████████████| 235kB 4.8MB/s Collecting notebook (from jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/a2/5d/d1907cd32ac00b5ead56f6e61d9794fa60ef105a22ac5da6e7556011580f/notebook-5.7.2-py2.py3-none-any.whl (9.0MB) 100% |████████████████████████████████| 9.0MB 2.9MB/s Collecting nbconvert (from jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/b5/bb/94c493051d60e5b9c0f7f9a368b324201818c1b1c4cae85d1e49a41846c7/nbconvert-5.4.0-py2.py3-none-any.whl (405kB) 100% |████████████████████████████████| 409kB 2.7MB/s Collecting ipykernel (from jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/d8/b0/f0be5c5ab335196f5cce96e5b889a4fcf5bfe462eb0acc05cd7e2caf65eb/ipykernel-5.1.0-py3-none-any.whl (113kB) 100% |████████████████████████████████| 122kB 24.8MB/s Collecting jupyter-console (from jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/cb/ee/6374ae8c21b7d0847f9c3722dcdfac986b8e54fa9ad9ea66e1eb6320d2b8/jupyter_console-6.0.0-py2.py3-none-any.whl Collecting ipywidgets (from jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/30/9a/a008c7b1183fac9e52066d80a379b3c64eab535bd9d86cdc29a0b766fd82/ipywidgets-7.4.2-py2.py3-none-any.whl (111kB) 100% |████████████████████████████████| 112kB 21.3MB/s Collecting qtconsole (from jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/e0/7a/8aefbc0ed078dec7951ac9a06dcd1869243ecd7bcbce26fa47bf5e469a8f/qtconsole-4.4.3-py2.py3-none-any.whl (113kB) 100% |████████████████████████████████| 122kB 24.7MB/s Collecting pluggy>=0.7 (from pytest>=3.2.2->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/1c/e7/017c262070af41fe251401cb0d0e1b7c38f656da634cd0c15604f1f30864/pluggy-0.8.0-py2.py3-none-any.whl Collecting attrs>=17.4.0 (from pytest>=3.2.2->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/3a/e1/5f9023cc983f1a628a8c2fd051ad19e76ff7b142a0faf329336f9a62a514/attrs-18.2.0-py2.py3-none-any.whl Collecting more-itertools>=4.0.0 (from pytest>=3.2.2->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/79/b1/eace304ef66bd7d3d8b2f78cc374b73ca03bc53664d78151e9df3b3996cc/more_itertools-4.3.0-py3-none-any.whl (48kB) 100% |████████████████████████████████| 51kB 17.4MB/s Collecting py>=1.5.0 (from pytest>=3.2.2->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/3e/c7/3da685ef117d42ac8d71af525208759742dd235f8094221fdaafcd3dba8f/py-1.7.0-py2.py3-none-any.whl (83kB) 100% |████████████████████████████████| 92kB 20.8MB/s Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages (from pytest>=3.2.2->mlagents==0.5.0) (39.0.1) Collecting atomicwrites>=1.0 (from pytest>=3.2.2->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/3a/9a/9d878f8d885706e2530402de6417141129a943802c084238914fa6798d97/atomicwrites-1.2.1-py2.py3-none-any.whl Collecting markdown>=2.6.8 (from tensorboard<1.8.0,>=1.7.0->tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/7a/6b/5600647404ba15545ec37d2f7f58844d690baf2f81f3a60b862e48f29287/Markdown-3.0.1-py2.py3-none-any.whl (89kB) 100% |████████████████████████████████| 92kB 18.7MB/s Collecting bleach==1.5.0 (from tensorboard<1.8.0,>=1.7.0->tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/33/70/86c5fec937ea4964184d4d6c4f0b9551564f821e1c3575907639036d9b90/bleach-1.5.0-py2.py3-none-any.whl Collecting html5lib==0.9999999 (from tensorboard<1.8.0,>=1.7.0->tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/ae/ae/bcb60402c60932b32dfaf19bb53870b29eda2cd17551ba5639219fb5ebf9/html5lib-0.9999999.tar.gz (889kB) 100% |████████████████████████████████| 890kB 4.3MB/s Collecting werkzeug>=0.11.10 (from tensorboard<1.8.0,>=1.7.0->tensorflow<1.8,>=1.7->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/20/c4/12e3e56473e52375aa29c4764e70d1b8f3efa6682bef8d0aae04fe335243/Werkzeug-0.14.1-py2.py3-none-any.whl (322kB) 100% |████████████████████████████████| 327kB 5.4MB/s Collecting terminado>=0.8.1 (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/2e/20/a26211a24425923d46e1213b376a6ee60dc30bcdf1b0c345e2c3769deb1c/terminado-0.8.1-py2.py3-none-any.whl Collecting Send2Trash (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/49/46/c3dc27481d1cc57b9385aff41c474ceb7714f7935b1247194adae45db714/Send2Trash-1.5.0-py3-none-any.whl Collecting tornado>=4 (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/e6/78/6e7b5af12c12bdf38ca9bfe863fcaf53dc10430a312d0324e76c1e5ca426/tornado-5.1.1.tar.gz (516kB) 100% |████████████████████████████████| 522kB 3.7MB/s Collecting ipython-genutils (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/fa/bc/9bd3b5c2b4774d5f33b2d544f1460be9df7df2fe42f352135381c347c69a/ipython_genutils-0.2.0-py2.py3-none-any.whl Collecting nbformat (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/da/27/9a654d2b6cc1eaa517d1c5a4405166c7f6d72f04f6e7eea41855fe808a46/nbformat-4.4.0-py2.py3-none-any.whl (155kB) 100% |████████████████████████████████| 163kB 5.6MB/s Collecting traitlets>=4.2.1 (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/93/d6/abcb22de61d78e2fc3959c964628a5771e47e7cc60d53e9342e21ed6cc9a/traitlets-4.3.2-py2.py3-none-any.whl (74kB) 100% |████████████████████████████████| 81kB 11.7MB/s Collecting prometheus-client (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/61/84/9aa657b215b04f21a72ca8e50ff159eef9795096683e4581a357baf4dde6/prometheus_client-0.4.2.tar.gz Collecting jinja2 (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/7f/ff/ae64bacdfc95f27a016a7bed8e8686763ba4d277a78ca76f32659220a731/Jinja2-2.10-py2.py3-none-any.whl (126kB) 100% |████████████████████████████████| 133kB 3.8MB/s Collecting jupyter-client>=5.2.0 (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/94/dd/fe6c4d683b09eb05342bd2816b7779663f71762b4fa9c2d5203d35d17354/jupyter_client-5.2.3-py2.py3-none-any.whl (89kB) 100% |████████████████████████████████| 92kB 21.5MB/s Collecting jupyter-core>=4.4.0 (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/1d/44/065d2d7bae7bebc06f1dd70d23c36da8c50c0f08b4236716743d706762a8/jupyter_core-4.4.0-py2.py3-none-any.whl (126kB) 100% |████████████████████████████████| 133kB 4.5MB/s Collecting pyzmq>=17 (from notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/24/a9/7619afa48606e6cfe345c124f31942698c0c066f133c98c2dcbe72018349/pyzmq-17.1.2-cp36-cp36m-macosx_10_6_intel.whl (1.3MB) 100% |████████████████████████████████| 1.3MB 4.5MB/s Collecting pygments (from nbconvert->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/02/ee/b6e02dc6529e82b75bb06823ff7d005b141037cb1416b10c6f00fc419dca/Pygments-2.2.0-py2.py3-none-any.whl (841kB) 100% |████████████████████████████████| 849kB 4.3MB/s Collecting mistune>=0.8.1 (from nbconvert->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/09/ec/4b43dae793655b7d8a25f76119624350b4d65eb663459eb9603d7f1f0345/mistune-0.8.4-py2.py3-none-any.whl Collecting entrypoints>=0.2.2 (from nbconvert->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/cc/8b/4eefa9b47f1910b3d2081da67726b066e379b04ca897acfe9f92bac56147/entrypoints-0.2.3-py2.py3-none-any.whl Collecting pandocfilters>=1.4.1 (from nbconvert->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/4c/ea/236e2584af67bb6df960832731a6e5325fd4441de001767da328c33368ce/pandocfilters-1.4.2.tar.gz Collecting defusedxml (from nbconvert->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/87/1c/17f3e3935a913dfe2a5ca85fa5ccbef366bfd82eb318b1f75dadbf0affca/defusedxml-0.5.0-py2.py3-none-any.whl Collecting testpath (from nbconvert->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/be/a4/162f9ebb6489421fe46dcca2ae420369edfee4b563c668d93cb4605d12ba/testpath-0.4.2-py2.py3-none-any.whl (163kB) 100% |████████████████████████████████| 163kB 5.4MB/s Collecting ipython>=5.0.0 (from ipykernel->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/1b/e2/ffb8c1b574f972cf4183b0aac8f16b57f1e3bbe876b31555b107ea3fd009/ipython-7.1.1-py3-none-any.whl (764kB) 100% |████████████████████████████████| 768kB 4.4MB/s Collecting prompt-toolkit<2.1.0,>=2.0.0 (from jupyter-console->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/d1/e6/adb3be5576f5d27c6faa33f1e9fea8fe5dbd9351db12148de948507e352c/prompt_toolkit-2.0.7-py3-none-any.whl (338kB) 100% |████████████████████████████████| 348kB 4.9MB/s Collecting widgetsnbextension~=3.4.0 (from ipywidgets->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/8a/81/35789a3952afb48238289171728072d26d6e76649ddc8b3588657a2d78c1/widgetsnbextension-3.4.2-py2.py3-none-any.whl (2.2MB) 100% |████████████████████████████████| 2.2MB 3.8MB/s Collecting ptyprocess; os_name != "nt" (from terminado>=0.8.1->notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/d1/29/605c2cc68a9992d18dada28206eeada56ea4bd07a239669da41674648b6f/ptyprocess-0.6.0-py2.py3-none-any.whl Collecting jsonschema!=2.5.0,>=2.4 (from nbformat->notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/77/de/47e35a97b2b05c2fadbec67d44cfcdcd09b8086951b331d82de90d2912da/jsonschema-2.6.0-py2.py3-none-any.whl Collecting decorator (from traitlets>=4.2.1->notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/bc/bb/a24838832ba35baf52f32ab1a49b906b5f82fb7c76b2f6a7e35e140bac30/decorator-4.3.0-py2.py3-none-any.whl Collecting MarkupSafe>=0.23 (from jinja2->notebook->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/da/fc/2979c425ad23d528d6ac2e1f3efdc28e572fa1e1fbd5a75171cbdd7ddaa5/MarkupSafe-1.1.0-cp36-cp36m-macosx_10_6_intel.whl Collecting jedi>=0.10 (from ipython>=5.0.0->ipykernel->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/7a/1a/9bd24a185873b998611c2d8d4fb15cd5e8a879ead36355df7ee53e9111bf/jedi-0.13.1-py2.py3-none-any.whl (177kB) 100% |████████████████████████████████| 184kB 2.8MB/s Collecting pickleshare (from ipython>=5.0.0->ipykernel->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/9a/41/220f49aaea88bc6fa6cba8d05ecf24676326156c23b991e80b3f2fc24c77/pickleshare-0.7.5-py2.py3-none-any.whl Collecting pexpect; sys_platform != "win32" (from ipython>=5.0.0->ipykernel->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/89/e6/b5a1de8b0cc4e07ca1b305a4fcc3f9806025c1b651ea302646341222f88b/pexpect-4.6.0-py2.py3-none-any.whl (57kB) 100% |████████████████████████████████| 61kB 15.0MB/s Collecting appnope; sys_platform == "darwin" (from ipython>=5.0.0->ipykernel->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/87/a9/7985e6a53402f294c8f0e8eff3151a83f1fb901fa92909bb3ff29b4d22af/appnope-0.1.0-py2.py3-none-any.whl Collecting backcall (from ipython>=5.0.0->ipykernel->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/84/71/c8ca4f5bb1e08401b916c68003acf0a0655df935d74d93bf3f3364b310e0/backcall-0.1.0.tar.gz Collecting wcwidth (from prompt-toolkit<2.1.0,>=2.0.0->jupyter-console->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/7e/9f/526a6947247599b084ee5232e4f9190a38f398d7300d866af3ab571a5bfe/wcwidth-0.1.7-py2.py3-none-any.whl Collecting parso>=0.3.0 (from jedi>=0.10->ipython>=5.0.0->ipykernel->jupyter->mlagents==0.5.0) Downloading https://files.pythonhosted.org/packages/09/51/9c48a46334be50c13d25a3afe55fa05c445699304c5ad32619de953a2305/parso-0.3.1-py2.py3-none-any.whl (88kB) 100% |████████████████████████████████| 92kB 4.8MB/s Installing collected packages: markdown, six, html5lib, bleach, wheel, numpy, protobuf, werkzeug, tensorboard, astor, absl-py, gast, termcolor, grpcio, tensorflow, Pillow, kiwisolver, cycler, pyparsing, python-dateutil, matplotlib, ptyprocess, tornado, terminado, Send2Trash, pygments, jsonschema, decorator, ipython-genutils, traitlets, jupyter-core, nbformat, mistune, entrypoints, pandocfilters, defusedxml, testpath, MarkupSafe, jinja2, nbconvert, parso, jedi, pickleshare, pexpect, appnope, backcall, wcwidth, prompt-toolkit, ipython, pyzmq, jupyter-client, ipykernel, prometheus-client, notebook, jupyter-console, widgetsnbextension, ipywidgets, qtconsole, jupyter, pluggy, attrs, more-itertools, py, atomicwrites, pytest, docopt, pyyaml, mlagents Running setup.py install for html5lib ... done Running setup.py install for absl-py ... done Running setup.py install for gast ... done Running setup.py install for termcolor ... done Running setup.py install for tornado ... done Running setup.py install for pandocfilters ... done Running setup.py install for backcall ... done Running setup.py install for prometheus-client ... done Running setup.py install for docopt ... done Running setup.py install for pyyaml ... done Running setup.py install for mlagents ... done Successfully installed MarkupSafe-1.1.0 Pillow-5.3.0 Send2Trash-1.5.0 absl-py-0.6.1 appnope-0.1.0 astor-0.7.1 atomicwrites-1.2.1 attrs-18.2.0 backcall-0.1.0 bleach-1.5.0 cycler-0.10.0 decorator-4.3.0 defusedxml-0.5.0 docopt-0.6.2 entrypoints-0.2.3 gast-0.2.0 grpcio-1.11.1 html5lib-0.9999999 ipykernel-5.1.0 ipython-7.1.1 ipython-genutils-0.2.0 ipywidgets-7.4.2 jedi-0.13.1 jinja2-2.10 jsonschema-2.6.0 jupyter-1.0.0 jupyter-client-5.2.3 jupyter-console-6.0.0 jupyter-core-4.4.0 kiwisolver-1.0.1 markdown-3.0.1 matplotlib-3.0.2 mistune-0.8.4 mlagents-0.5.0 more-itertools-4.3.0 nbconvert-5.4.0 nbformat-4.4.0 notebook-5.7.2 numpy-1.14.5 pandocfilters-1.4.2 parso-0.3.1 pexpect-4.6.0 pickleshare-0.7.5 pluggy-0.8.0 prometheus-client-0.4.2 prompt-toolkit-2.0.7 protobuf-3.6.1 ptyprocess-0.6.0 py-1.7.0 pygments-2.2.0 pyparsing-2.3.0 pytest-4.0.0 python-dateutil-2.7.5 pyyaml-3.13 pyzmq-17.1.2 qtconsole-4.4.3 six-1.11.0 tensorboard-1.7.0 tensorflow-1.7.1 termcolor-1.1.0 terminado-0.8.1 testpath-0.4.2 tornado-5.1.1 traitlets-4.3.2 wcwidth-0.1.7 werkzeug-0.14.1 wheel-0.32.3 widgetsnbextension-3.4.2 You are using pip version 10.0.1, however version 18.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command.
pipが古いとか言われている様ですがとりあえず必要なライブラリなどのインストール、セットアップは成功した様です。
正しくセットアップが完了しているか確認してみましょう。
$ mlagents-learn --help ▄▄▄▓▓▓▓ ╓▓▓▓▓▓▓█▓▓▓▓▓ ,▄▄▄m▀▀▀' ,▓▓▓▀▓▓▄ ▓▓▓ ▓▓▌ ▄▓▓▓▀' ▄▓▓▀ ▓▓▓ ▄▄ ▄▄ ,▄▄ ▄▄▄▄ ,▄▄ ▄▓▓▌▄ ▄▄▄ ,▄▄ ▄▓▓▓▀ ▄▓▓▀ ▐▓▓▌ ▓▓▌ ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌ ╒▓▓▌ ▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓ ▓▀ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▄ ▓▓▌ ▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄ ▓▓ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▐▓▓ ^█▓▓▓ ▀▓▓▄ ▐▓▓▌ ▓▓▓▓▄▓▓▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▓▄ ▓▓▓▓` '▀▓▓▓▄ ^▓▓▓ ▓▓▓ └▀▀▀▀ ▀▀ ^▀▀ `▀▀ `▀▀ '▀▀ ▐▓▓▌ ▀▀▀▀▓▄▄▄ ▓▓▓▓▓▓, ▓▓▓▓▀ `▀█▓▓▓▓▓▓▓▓▓▌ ¬`▀▀▀█▓ Usage: mlagents-learn <trainer-config-path> [options] mlagents-learn --help Options: --env=<file> Name of the Unity executable [default: None]. --curriculum=<directory> Curriculum json directory for environment [default: None]. --keep-checkpoints=<n> How many model checkpoints to keep [default: 5]. --lesson=<n> Start learning from this lesson [default: 0]. --load Whether to load the model or randomly initialize [default: False]. --run-id=<path> The directory name for model and summary statistics [default: ppo]. --num-runs=<n> Number of concurrent training sessions [default: 1]. --save-freq=<n> Frequency at which to save model [default: 50000]. --seed=<n> Random seed used for training [default: -1]. --slow Whether to run the game at training speed [default: False]. --train Whether to train model, or only run inference [default: False]. --worker-id=<n> Number to add to communication port (5005) [default: 0]. --docker-target-name=<dt> Docker volume to store training-specific files [default: None]. --no-graphics Whether to run the environment in no-graphics mode [default: False].
学習用の実行環境をビルドする
Unityを起動して以下のフォルダを開きます。
ml-agents-master/UnitySDK/
プロジェクトが開いたら次にシーンを開きます。
とりあえず3DBallというサンプルを開いてみます。
Projectタブから [Assets] → [ML-Agents] → [Examples] → [3DBall] → [Scenes] にある 3DBall を開きます。
[Hierarchy]タブの [Ball3DAcademy] → [Ball3DBrain] を選択します。
[Inspector]の Brain Type を "External" に変更して保存します。
メインメニューの [File] → [BuildSettings] を開いて Platform が [PC, Mac & Linux Standalone] になっていることを確認します。
出力先を以下のフォルダに指定してビルドします。
ml-agents-master/ml-agents/3DBall.app
学習させてみる
サンプルを学習させてみましょう。
以下のコマンドを実行します。
$ mlagents-learn ../config/trainer_config.yaml --env=3DBall --run-id=firstRun --train
学習用の小さいウィンドウの実行環境が起動して、ひたすら学習を繰り返します。
デフォルトの設定では50000回試行を繰り返します。
$ mlagents-learn ../config/trainer_config.yaml --env=3DBall --run-id=firstRun --train ▄▄▄▓▓▓▓ ╓▓▓▓▓▓▓█▓▓▓▓▓ ,▄▄▄m▀▀▀' ,▓▓▓▀▓▓▄ ▓▓▓ ▓▓▌ ▄▓▓▓▀' ▄▓▓▀ ▓▓▓ ▄▄ ▄▄ ,▄▄ ▄▄▄▄ ,▄▄ ▄▓▓▌▄ ▄▄▄ ,▄▄ ▄▓▓▓▀ ▄▓▓▀ ▐▓▓▌ ▓▓▌ ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌ ╒▓▓▌ ▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓ ▓▀ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▄ ▓▓▌ ▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄ ▓▓ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▐▓▓ ^█▓▓▓ ▀▓▓▄ ▐▓▓▌ ▓▓▓▓▄▓▓▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▓▄ ▓▓▓▓` '▀▓▓▓▄ ^▓▓▓ ▓▓▓ └▀▀▀▀ ▀▀ ^▀▀ `▀▀ `▀▀ '▀▀ ▐▓▓▌ ▀▀▀▀▓▄▄▄ ▓▓▓▓▓▓, ▓▓▓▓▀ `▀█▓▓▓▓▓▓▓▓▓▌ ¬`▀▀▀█▓ INFO:mlagents.trainers:{'--curriculum': 'None', '--docker-target-name': 'None', '--env': '3DBall', '--help': False, '--keep-checkpoints': '5', '--lesson': '0', '--load': False, '--no-graphics': False, '--num-runs': '1', '--run-id': 'firstRun', '--save-freq': '50000', '--seed': '-1', '--slow': False, '--train': True, '--worker-id': '0', '<trainer-config-path>': '../config/trainer_config.yaml'} CrashReporter: initialized Mono path[0] = '/Users/takezoh/Documents/product/unity/ml-agents-master/ml-agents/3DBall.app/Contents/Resources/Data/Managed' Mono config path = '/Users/takezoh/Documents/product/unity/ml-agents-master/ml-agents/3DBall.app/Contents/MonoBleedingEdge/etc' INFO:mlagents.envs: 'Ball3DAcademy' started successfully! Unity Academy name: Ball3DAcademy Number of Brains: 1 Number of External Brains : 1 Reset Parameters : Unity brain name: Ball3DBrain Number of Visual Observations (per agent): 0 Vector Observation space size (per agent): 8 Number of stacked Vector Observation: 1 Vector Action space type: continuous Vector Action space size (per agent): [2] Vector Action descriptions: , 2018-11-23 11:48:38.502440: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA INFO:mlagents.envs:Hyperparameters for the PPO Trainer of brain Ball3DBrain: batch_size: 64 beta: 0.001 buffer_size: 12000 epsilon: 0.2 gamma: 0.995 hidden_units: 128 lambd: 0.99 learning_rate: 0.0003 max_steps: 5.0e4 normalize: True num_epoch: 3 num_layers: 2 time_horizon: 1000 sequence_length: 64 summary_freq: 1000 use_recurrent: False graph_scope: summary_path: ./summaries/firstRun-0 memory_size: 256 use_curiosity: False curiosity_strength: 0.01 curiosity_enc_size: 128 INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 1000. Mean Reward: 1.230. Std of Reward: 0.691. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 2000. Mean Reward: 1.343. Std of Reward: 0.689. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 3000. Mean Reward: 1.624. Std of Reward: 0.936. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 4000. Mean Reward: 2.339. Std of Reward: 1.491. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 5000. Mean Reward: 3.799. Std of Reward: 2.948. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 6000. Mean Reward: 6.096. Std of Reward: 5.431. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 7000. Mean Reward: 8.803. Std of Reward: 8.535. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 8000. Mean Reward: 13.147. Std of Reward: 11.828. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 9000. Mean Reward: 32.203. Std of Reward: 25.492. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 10000. Mean Reward: 52.310. Std of Reward: 33.449. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 11000. Mean Reward: 65.917. Std of Reward: 37.350. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 12000. Mean Reward: 84.487. Std of Reward: 27.574. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 13000. Mean Reward: 81.887. Std of Reward: 25.280. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 14000. Mean Reward: 100.000. Std of Reward: 0.000. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 15000. Mean Reward: 90.258. Std of Reward: 21.918. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 16000. Mean Reward: 79.829. Std of Reward: 34.560. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 17000. Mean Reward: 93.223. Std of Reward: 15.343. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 18000. Mean Reward: 96.100. Std of Reward: 11.015. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 19000. Mean Reward: 82.669. Std of Reward: 31.036. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 20000. Mean Reward: 85.664. Std of Reward: 26.782. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 21000. Mean Reward: 83.436. Std of Reward: 28.500. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 22000. Mean Reward: 81.273. Std of Reward: 34.778. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 23000. Mean Reward: 97.642. Std of Reward: 7.822. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 24000. Mean Reward: 98.325. Std of Reward: 3.792. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 25000. Mean Reward: 66.756. Std of Reward: 41.673. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 26000. Mean Reward: 72.700. Std of Reward: 38.289. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 27000. Mean Reward: 100.000. Std of Reward: 0.000. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 28000. Mean Reward: 85.515. Std of Reward: 29.961. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 29000. Mean Reward: 91.857. Std of Reward: 25.077. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 30000. Mean Reward: 84.929. Std of Reward: 32.173. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 31000. Mean Reward: 74.700. Std of Reward: 38.516. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 32000. Mean Reward: 80.664. Std of Reward: 37.163. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 33000. Mean Reward: 92.123. Std of Reward: 26.043. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 34000. Mean Reward: 75.225. Std of Reward: 42.485. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 35000. Mean Reward: 92.931. Std of Reward: 24.489. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 36000. Mean Reward: 89.385. Std of Reward: 26.903. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 37000. Mean Reward: 100.000. Std of Reward: 0.000. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 38000. Mean Reward: 87.136. Std of Reward: 31.519. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 39000. Mean Reward: 95.162. Std of Reward: 16.761. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 40000. Mean Reward: 86.300. Std of Reward: 33.576. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 41000. Mean Reward: 75.771. Std of Reward: 38.771. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 42000. Mean Reward: 82.331. Std of Reward: 32.022. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 43000. Mean Reward: 72.575. Std of Reward: 41.392. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 44000. Mean Reward: 82.969. Std of Reward: 28.544. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 45000. Mean Reward: 83.950. Std of Reward: 34.012. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 46000. Mean Reward: 87.743. Std of Reward: 30.242. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 47000. Mean Reward: 84.314. Std of Reward: 34.053. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 48000. Mean Reward: 93.154. Std of Reward: 23.716. Training. INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 49000. Mean Reward: 72.807. Std of Reward: 40.860. Training. INFO:mlagents.envs:Saved Model INFO:mlagents.trainers: firstRun-0: Ball3DBrain: Step: 50000. Mean Reward: 93.336. Std of Reward: 16.888. Training. INFO:mlagents.envs:Saved Model INFO:mlagents.envs:List of nodes to export : INFO:mlagents.envs: action INFO:mlagents.envs: value_estimate INFO:mlagents.envs: action_probs INFO:mlagents.envs: value_estimate INFO:tensorflow:Restoring parameters from ./models/firstRun-0/model-50001.cptk INFO:tensorflow:Froze 16 variables. Converted 16 variables to const ops.
無事に学習を終えました。
学習結果を反映させてみる
その前にTensorFlowSharpプラグインのインポートする必要があります。
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
ダウンロードしたパッケージを任意のフォルダに移動して、
メインメニューの [Assets] [ImportPackage] [CustomPackage] を選択してダウンロードしたパッケージをインポートします。
先程学習した結果のファイルは以下のフォルダに出力されています。
ml-agents/models/firstRun-0/3DBall_firstRun-0.bytes
それを以下のフォルダにコピーします。
UnitySDK/Assets/ML-Agents/Examples/3DBall/TFModels/
先程の Barin Type を [Internal] に変更します。
GraphModelの項目に先程コピーした 3DBall_firstRun-0 を指定します。
この状態で再生ボタンを押すとボールを落とさない挙動が確認できると思います。
その他に以下の様なサンプルがあるので色々と試してみると楽しかも知れません。
- BananaCollectors
複数のプレイヤーが青いバナナを避けながら黄色いバナナを多く取る。
- Bouncer
ジャンプしながら黄色バナナを取る。
- Crawler
4足歩行を覚えさせる。
- GridWorld
障害物を避けながらゴールに向かう。
- Hallway
置かれた箱の色を認識して同じ色のゴールに向かう。
- PushBlock
オレンジの箱をチェックのゴールまで運ぶとクリア。
- Pyramids
床に置かれた赤いスイッチを踏むと、一つだけ黄色に変化するピラミッドがあるので、
それを崩して上に乗っている箱を取るとクリア。
- Reacher
2関節のジョイントアームをゴール位置に移動させる。
- Scoccer
2vs2のサッカーゲーム。
それぞれのチームでオフェンス、ディフェンスを学習させている。
- Tennis
二人のプレイヤーがボールを落とさない様にラリーを続ける。
- Walker
そのままだと倒れてしまうキャラクタに2足歩行を覚えさせる。
- WallJump
箱を使って壁を飛び越えてゴールに向かう。